

前瞻科技與管理 13 卷 2 期,56-72 頁(2025 年 5 月) Journal of Advanced Technology and Management Vol. 13, No. 2, pp. 56-72 (May, 2025) DOI:10.6193/JATM.202505 13(2).0004

## 衛星光通訊技術

鍾德元\* 陳昇暉 陳思妤

國立中央大學光電科學與工程學系教授

### 摘要

衛星光通訊技術透過雷射的高指向性,實現長距離、高速且低功耗的資料傳輸。相較傳統無線電波,具低干擾、高安全性與小型化等優勢。本文探討衛星光通訊的光學與光電需求,並進行光功率預算計算。以美國太空總署、麻省理工學院與佛羅里達大學共同開發的CLICK A 與 CLICK B/C 低軌立方衛星為例,分析其通訊架構、波長選擇、高斯光束傳輸特性與光功率預算,進一步探討衛星間的相對角速度與角度對準修正機制。本團隊亦建構可見光測試平臺以驗證概念,並規劃未來轉換至 1,550 nm 波長,以符合美國太空發展署光學通訊標準,最終目標為建立臺灣自主立方衛星光通訊系統。

關鍵詞:自由空間光通訊、光功率預算、雷射通訊、對準與追蹤、衛星光通訊

電子郵件: tychung@dop.ncu.edu.tw

(收件日期: 2025年1月3日;修正日期: 2025年1月15日;接受日期: 2025年1月15日)





<sup>\*</sup> 通訊作者: 鍾德元



Journal of Advanced Technology and Management Vol. 13, No. 2, pp. 56-72 (May, 2025) DOI:10.6193/JATM.202505 13(2).0004

### **Satellite Optical Communication**

Te-Yuan Chung\*, Sheng-Hui Chen, Szu-Yu Chen

Professor, Department of Optics and Photonics, National Central University

#### **Abstract**

Satellite laser communication is a branch of free-space optical communication. By leveraging the high directionality of lasers, it enables long-distance, high-speed, and energy-efficient data transmission. Compared to conventional Radio Frequency (RF) communication, laser communication offers advantages such as reduced interference, enhanced security, and a more compact design. This report examines the optical and photonics requirements and evaluates the required optical power budget. This report uses the CLICK A, CLICK B/C low-earth orbit CubeSat system, jointly developed by National Aeronautics and Space Administration (NASA), Massachusetts Institute of Technology (MIT), and the University of Florida (UF), as a case study to explore the design based on publicly available information. The fundamental architecture of satellite optical communication, wavelength selection, power budget, and Gaussian beam transmission calculations are discussed. The relative angular velocity between satellites, as well as the alignment and correction mechanisms for angular adjustments are also addressed. A visible-light-based testing platform was developed to validate optical and electronic system concepts. Future work includes transitioning to a 1,550 nm wavelength to align with Space Development Agency (SDA) optical communication standards, with the ultimate goal of developing a CubeSat optical communication system for Taiwan.

**Keywords:** free space optical communication, optical power budget, laser communication, pointing and tracking, satellite optical communication

Corresponding Author: Te-Yuan Chung E-mail: tychung@dop.ncu.edu.tw





## 壹、簡介

雷射衛星通訊可被視為自由空間光通訊(Free Space Optical Communication)的一個分支,由於雷射具有極佳的指向性,因此能量不易散失而可以達成長距離傳輸,加上太空中沒有散射與吸收,因此太空中的雷射光通訊是個理想的長距離傳輸資訊方式,相較傳統射頻(Radio Frequency, RF)通訊的好處為低功耗、小尺寸、低干擾、高速資料量(High Data Rate),高通訊安全性。基礎自由空間雷射通訊架構如圖 1,分為發射端與接收端,分別以Tx(Transmission)與 Rx(Reception)表示。Tx 端主要將雷射光依照要傳輸的訊號以特定編碼方式進行調制(Modulation),可以為直接改變電流達成的振幅(Amplitude)調制,或由外部的元件對連續輸出的雷射光進行振幅或相位(Phase)調制而後經由功能稱為 Booster的以光學濾光鏡(Filter)分開訊號與背景放大功率後進入自由空間傳輸。而 Rx 部分接收後理想上會先經由稱為前級放大(Pre-Amplifier)的掺鉺光纖放大器(Erbium-Doped Fiber Amplifier, EDFA)預放大(Pre-Amplifier)的掺鉺光纖放大器(Erbium-Doped Fiber Amplifier, EDFA)預放大(Pre-Amplifier)。以光學濾光鏡濾除背景光而得到訊號光,再經由解調(Demodulation)得到傳輸資訊。

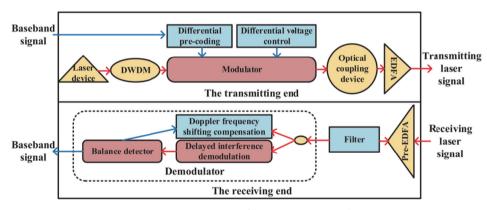



圖1 雷射光通訊基礎 Tx 與 Rx 架構

資料來源: Li, Lin, Liu, Dong, and Zhao (2022)。

然而要達成雷射光通訊需要橫跨多項領域通力合作才可能達成,包含光學、雷射、光電、電子電路、通訊、控制、機構、太空等領域。以光學的角度而言,帶有資訊的雷射光由 Tx 抵達 Rx 需要穩定且高度精確對準且需要達到相當的功率是極為關鍵且嚴苛的核心要求,因此本篇論文將針對光學與光電部分的要求及光功率預算(Power Budget)進行討論,首先針對使用商用零件組裝成的 CLICK A、CLICK B/C 學界計畫公開的部分進行討論,接著藉由學理計算估計光通訊的功率預算。接著說明衛星相對角速度計算,最後說明本團隊目前開發之狀況。

## 貳、CLICKA、CLICK B/C 系統

CLICK A、CLICK B/C 是麻省理工學院 (Massachusetts Institute of Technology, MIT) 與

佛羅里達大學(University of Florida, UF)與美國太空總署(National Aeronautics and Space Administration, NASA)合作的立方衛星雷射通訊(CubeSat Laser Infrared Crosslink)計畫(Kammerer et al., 2023)。目的為使用商用光學元件架構出小體積的衛星對衛星雙向通訊連結(Duplex Crosslink)雷射光通訊系統。整個計畫有兩部分:CLICK A 為衛星對地通訊與對準、收穫、追蹤之驗證(Pointing, Acquisition and Tracking, PAT)其外觀與主要結構如圖 2(a)及圖 2(b),CLICK A 內部結構如圖 3(a),作為第二期企劃之降低風險實驗;CLICK B/C 為基礎架構相同的雙衛星,外觀如圖 2(c)而內部結構如圖 3(b),驗證衛星對衛星之雙向連結通訊。兩組實驗皆使用標準光纖通訊 1,550 nm 附近波長。對準方式為兩階段(Two-Step)指向(Pointing),第一階段使用衛星姿態控制對準 1.3 mrad(0.074°)寬的 500 mW、976 nm Beacon 尋標光束(以下簡稱 Beacon),第二階段由微機電快速轉向反射鏡(Micro-Electro-Mechanical Systems Fast Steering Mirror, MEMS FSM)快速對準至精度 70 µrad。

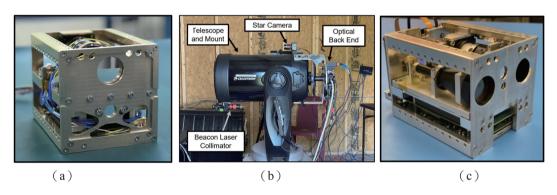



圖 2 (a) CLICK A 外觀、(b) CLICK A 地面站架構與(c) CLICK B/C 開發單元 資料來源: Kammerer et al. (2023)。

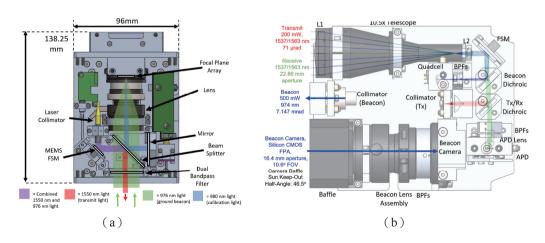



圖 3 (a) CLICK A 內部架構與 (b) CLICK B/C 內部架構

資料來源: Kammerer et al. (2023)。

整個計畫分為兩部分,CLICK A 為一個獨立的 3 U 立方衛星,飛行高度 400 km 主要目的為測試精密轉向反射鏡控制達成精準通訊光束指向,以雷射對地通訊 10 Mbps 連結的建立,已於 2022 年發射,可達成精準指向但未能達成光通訊的建立;CLICK B/C 為兩個近乎完全相同,各為 1.5 U 的立方衛星於低地軌道運行,使用與 CLICK A 相同的雷射,目的為嘗試建立兩個衛星間 25 ~ 580 km 距離 20 Mbps 的光通訊連結,並進行距離量測,預計於 2025 年發射測試(Coogan et al., 2022)。

### 參、光通訊衛星基本架構與通訊規格要求

小型光通訊衛星的基本架構除去被動光學系統後大致如圖 4,最重要的兩個次系統為「通訊次系統」與「PAT 次系統」,而以「電源次系統」控制整體衛星電能運用,並以電腦進行資料處理與追蹤計算。通訊規格為光通訊衛星最重要的參數,以 20 Mbps 通訊位元速率,並以  $10^9$  位元錯誤率(Bit-Error-Rate, BER)為基準,所需使用之頻寬(Bandwidth)即約為 20 MHz,依照不同的編碼方式,如以二進位相移鍵控(Phase Shift Keying, PSK)方式編碼,則訊噪比(Signal-to-Noise Ratio, SNR)需要大於 18 或 12.6 dB,若以開關鍵控(On-Off Keying, OOK)編碼,則 SNR 需大於 36 或 15.6 dB。由於衛星光通訊要使用任何 PSK 都會增加困難度,因此初步架構還是以 OOK 為設計方向。

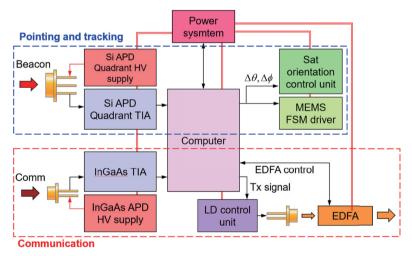



圖 4 光通訊衛星基本架構方塊圖

資料來源:作者自行產製。

## 肆、通訊波長選擇

光在太空中不論任何波長皆不會被吸收或散射,因此理論上沒有波常選擇的需要,然而 地球大氣則有明顯的穿透波段,圖5為海平面近紅外光穿透光譜,可以看到有數個較高穿透 的波段,而短波長部分是因雷利散射(Rayleigh Scattering)而穿透逐漸降低,因此若為衛星對地通訊則可以選擇高穿透的波段,而 1,550 nm 範圍亦稱為 C-Band,為目前標準光纖通訊波段,而 850 nm 為短距離光通訊常使用波段,因此這兩個波段有較多發展較好的光源與偵測器甚至通訊模組可使用。而 1,550 nm 波段儘管雷射光源功率通常不足,但有 EDFA 可供使用,能將功率放大到瓦級,且大部分元件可以是光纖為基礎的元件,可以有較佳的抗震動、抗重力能力。因此太空衛星通訊以 1,550 nm 波段較為適合,也因此美國太空發展署(Space Development Agency [SDA], 2024)發布的標準也以 1,550 nm 作為標準太空光通訊波段。

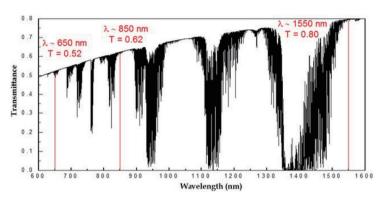



圖 5 每公里海平面大氣穿透率光譜

資料來源:García-Martínez, Denisenko, Soto, Arroyo, Orue, and Fernandez (2013) 、Carrasco-Casado, Fernández, and Denisenko (2016)。

### 伍、光功率預算與設計基本概念與參數

功率預算是設計雷射光通訊衛星的第一步,主要分光工率預算與電功率預算兩部分;本論文主要討論光功率預算,如前所述通訊雷射(以下簡稱 Comm)波長的選擇為 1,550 nm 雷射,目前商用可得到許多可高速傳輸的 1,550 nm 模組,預計可以使用這些模組聯接到 EDFA 放大後輸出。而雙向溝通需要將波長錯開,由於需要 EDFA 放大,而 EDFA 增益光譜如圖 6,因此另一個波長可選在 1,530 nm。另外,輔助對準的 Beacon 光束,需要稍大的發散角,功率越大越好,商用近紅外半導體雷射中 976 nm 可以有最大的光輸出功率,以蝶式封裝(Butterfly Package)光纖耦合(Fiber Coupled)之 976 nm 雷射甚至可達 900 mW,輸出如圖 7,單模輸出的 976 nm 雷射最高則達 500 mW。因此以下將以 Beacon 光束 976 nm、500 mW 與 Comm 光束 1,550 nm、2 W 為光源規格計算功率預算。而相對應的偵測器分別為矽基(Silicon-Based)的四象限偵測器(Quadrant Detector)及高速 InGaAs 雪崩二極體偵測器(Avalanche Photo-Detector, APD)。EDFA 可將輸入的光訊號放大,目前市面上可找到 0 dBm(1 mW)輸入,達到輸出 +34 dBm(2.5 W)(Amonics AEDFA-PM-34-M)的放大器,輸入符合低功耗與小尺寸的要求。這些元件規格如表 1 與表 2,爾後計算也將參考這些參數。

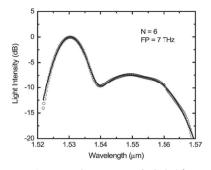



圖 6 一般 EDFA 增益光譜

資料來源: Lu, Wu, and Wong (2004)。



圖 7 蝶式封裝光纖耦合半導體雷射,輸出波長為 976 nm,功率可達 900 mW

資料來源: Thorlabs 的 BL976-PAG900 976 nm 光纖耦合蝶形雷射二極體(Thorlabs, 2014)。

#### 表1 光源規格與參數

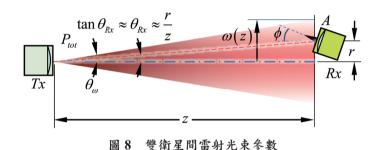
|              | <b>参</b> 數            |                 |              |                     |         |
|--------------|-----------------------|-----------------|--------------|---------------------|---------|
| 元件           | Model#                | Wavelength (nm) | CW Power (W) | Fiber Output/<br>NA | V/I     |
| Beacon Laser | Thorlabs BL976-PAG500 | 976             | 0.5          | FC/APC              | 2.5V/1A |
| EDFA         | Amonics AEDFA-PM-34-M | 1,550 and 1,530 | 2            | FC/APC              | N/A     |

註: CW: 連續波 (Continuous Wave); NA: 數值孔徑 (Numerical Aperture); EDFA: 掺鉺光纖放大器 (Erbium-Doped Fiber Amplifier); FC/APC: 斜角光纖接頭 (Angled Physical Contacted Fiber Connector)。 資料來源: Thorlabs (2014)、Amonics (n.d.)。

#### 表 2 偵測器規格與參數

|                        | 參數                       |                      |                    |                                                                             |        |      |          |
|------------------------|--------------------------|----------------------|--------------------|-----------------------------------------------------------------------------|--------|------|----------|
| 元件                     | Model#                   | Active<br>Area       | Rise/<br>Fall Time | NEP                                                                         | $I_D$  | Cap. | R        |
| Si Quadrant<br>APD Det | Excelitas<br>C30927EH-03 | 1.77 mm <sup>2</sup> | 3 ns               | $1.0 \times 10^{-12} [A/\sqrt{Hz}]$<br>$55.0 \times 10^{-12} [W/\sqrt{Hz}]$ | 100 nA | 3 pF | 55 [A/W] |
| InGaAs APD             | Thorlabs<br>APD130C      | 0.2 mm               | DC-50MHz           | $0.46\times10^{-12}\left[W/\sqrt{Hz}\right]$                                |        |      | 9 [A/W]  |

註:NEP:雜訊等效功率 (Noise Equivalent Power); Cap.: 電容 (Capacitance); APD: 雪崩二極體偵測器 (Avalanche Photo-Detector)。


資料來源: Excelitas (n.d.) 、Thorlabs (n.d.) 。

不論是 Comm 或 Beacon 雷射光進入自由空間或太空後皆不受吸收與散射影響,因此光功率不會衰減,然而由於傳輸距離為數百公里起跳,因此雷射光束會因為繞射而使得光束尺寸變得相當大,造成光強度(Intensity  $W/m^2$ )降低,而到達衛星的 Rx 最多能收到的光功率將為光強度乘上接收光學元件的口徑,因此能蒐集的功率有限,而這些功率需大於偵測器的偵測極限才有機會被解調轉為資訊,然而為了要降低 BER,接收到的光功率需數個數量級高於偵測器的雜訊等效功率(Noise Equivalent Power, NEP)才能確保工作正常,若如前述使用 OOK 編碼需要 SNR = 36 能達到通訊標準的 BER <  $10^9$ 。基本上光學的功率預算即為此

部分的功率計算,而 Comm 與 Beacon 光輸出皆可視為高斯光束(Gaussian Beam)因此可以高斯光束計算傳輸到 Rx 端能收到的訊號功率大小。由於採用兩個階段建立光學通訊連結,第一階段的對準使用全球定位系統(Global Positioning System, GPS)訊號粗略對準兩個衛星,而後第二階段將需要依靠 Beacon 於四象限偵測器上的誤差訊號(Error Signal)高精度修正衛星姿態方位,而這個過程會改變 Beacon 達到 Rx 的強度,因此姿態造成的光訊號大小亦需要考慮。

## 陸、高斯光束自由空間傳輸功率計算

高斯光束為雷射基本模態(Fundamental Mode),是具有繞射極限或最小發散角的光束,因此傳輸到 Rx 端的光強度可由高斯光束計算。圖 8 為 Tx 與 Rx 間的各項光參數與幾何參數設定。



資料來源:作者自行產製。

基本上高斯光束半徑 (Radius) 隨著傳遞距離變化可寫為:

$$\omega(z) = \omega \sqrt{+\left(\frac{\lambda \cdot z}{\pi \cdot \omega}\right)} \tag{1}$$

其中z為傳輸距離, $\omega_0$ 為準直雷射輸出端的光束半徑, $\lambda$ 為雷射波長。

以圖 8 之幾何, Rx 端接收功率可推導為:

$$P_A(\omega_0, z, r, \phi) \approx A \frac{2P_{tot}}{\pi\omega_0^2} \cos\phi \cdot \left[\frac{\omega_0}{\omega(z)}\right]^2 \exp\left[\frac{2r^2}{\omega^2(z)}\right]$$
 (2)

其中A為接收端光學孔徑面積(Aperture Area), $P_{tot}$ 為 Tx 端輸出總光功率,r為 Rx 衛星離 Tx 光軸距離。當傳輸距離很遠時,式(1)可近似為亦可以雷射發散角  $\theta_{\omega}$ 表示,這在幾何光學近似時較易使用:

$$\omega(\theta_{\omega}, z) = z \tan \theta_{\omega} \approx z \theta_{\omega} \tag{3}$$

另外高斯光束的發散角可寫為:

$$\theta_{\omega} = \frac{\lambda}{\pi \cdot \omega_{0}} \tag{4}$$

式(3)、式(4)帶入式(2)並將參數 $\omega_0$ 改為 $\theta_0$ 可得:

$$P_A(\theta_{\omega}, z, r, \phi) \approx \frac{2AP_{tot}\cos\phi}{\pi z^2 \theta_{\omega}^2} \exp\left(-\frac{2r^2}{z^2 \theta_{\omega}^2}\right)$$
 (5)

此公式對 Beacon 與 Comm 都適用。設計時的 Rx 端的最小需要功率可寫為:

$$P_{Rx min} = SNR \cdot \sqrt{B} \cdot NEP \tag{6}$$

其中 SNR 為偵測器於工作時需要達到的訊噪比,B 為通訊頻寬,NEP 為偵測器之雜訊等效功率。因此,式(5)大於式(6)為功率預算的需求,因此可用以估計 Beacon 與 Comm 的總功率  $P_{tot}$  與光束發散角  $\theta_0$  設計:

$$SNR \cdot \sqrt{B} \cdot NEP < \frac{2AP_{tot}\cos\phi}{\pi z^2 \theta_{\omega}^2} \exp\left(-\frac{2r^2}{z^2 \theta_{\omega}^2}\right) \tag{7}$$

### 柒、Beacon 功率預算計算

以傳輸距離 500 km、以衛星姿態控制能達成的精度  $\theta Rx = 0.014^{\circ} = 0.25 \text{ mrad}$ ,假設 Rx 光學孔徑為圓形且半徑 2.5 cm,同時間 Rx 端的光軸也有相同的精度  $\phi = 0.25 \text{ mrad}$ 、Beacon 光束發散角  $\theta \omega = 0.1^{\circ} = 1.7 \text{ mrad}$ 、SNR = 4、Beacon 頻率 10 Hz。而如圖 9 p:

$$\theta_{Rx} \approx \frac{r}{z}$$
 (8)

故 Rx 離 Tx 光軸距離為 r=125 m,詳細計算參數如表 3,而圖 9 為計算之功率預算,紅線實線為理想上 Rx 可接收到的光功率,藍色虛線為最低 Rx 需求功率可以達到 Beacon 追蹤的規格。

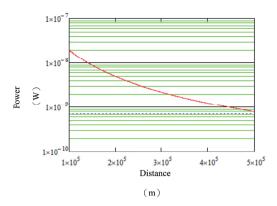



圖 9 Beacon 光束於 500 km 內理想傳輸功率與要求最低 Rx 接收功率

資料來源:作者自行產製。

表 3 Beacon 光束功率預算計算參數

|           |                        | 參數                           |                                     |         |
|-----------|------------------------|------------------------------|-------------------------------------|---------|
| 類別        | Parameter              | Symbol                       | Value [unit]                        | Remark  |
| Geometric | Rx View Angle from Tx  | $\theta_{Rx}$                | 0.25 [mrad]                         |         |
|           | Rx Off Axis Angle      | ф                            | 0.25 [mrad]                         |         |
|           | Sat-Sat Distance       | z                            | 500 [km]                            |         |
|           | Rx Off Axis Distance   | r                            | 125 [m]                             |         |
| Tx        | Laser Wavelength       | λ                            | 976 [nm]                            |         |
|           | Laser Power            | $P_{\scriptscriptstyle tot}$ | 0.5 [W]                             |         |
|           | Laser Divergence Angle | $	heta_\omega$               | 0.1 [deg]<br>1.7 [mrad]             |         |
|           | Modulation Bandwidth   | B                            | 10 [Hz]                             |         |
|           | Waist Radius           | $\omega_0$                   | 0.178 [mm]                          |         |
| Rx        | Aperture Area          | A                            | $1.96 \times 10^{-3}  [\text{m}^2]$ | φ5 [cm] |
|           | Noise Equivalent Power | NEP                          | $55 \times 10^{-12}  [W]$           |         |
|           | Signal-to-Noise Ratio  | SNR                          | 4                                   |         |
|           | Minimum Required Power | $P_{\mathit{Rx\_min}}$       | $6.96 \times 10^{-10}  [W]$         |         |

資料來源:作者自行產製。

## 捌、Comm 功率預算計算

同樣以傳輸距離 500 km、以 MEMS FSM 達成的精度  $\theta_{Rx}$  = 0.004° = 70 μrad,同時間 Rx 端的光軸也有相同的精度  $\phi$  = 70 μrad,此時 Rx 離 Tx 光軸距離 r = 35 m,Comm 光束發散角  $\theta_{o}$  = 0.015° = 0.025 mrad、SNR = 36。詳細計算參數如表 4,而圖 10 為計算之功率預算,紅線實線為理想上 Rx 可接收到的光功率,藍色虛線為最低 Rx 需求功率。以此條件計算出隨著衛星距離增加到約 450 km,就會達到最低 Rx 接收功率。到 500 km 時仍可達成 20 Mbps,但 BER 會增加。

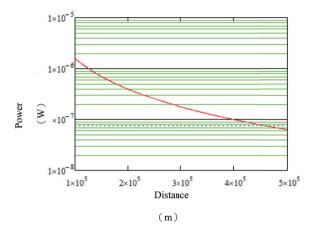



圖 10 Comm 光束於 500 km 內理想傳輸功率與要求最低 Rx 接收功率

資料來源:作者自行產製。

表 4 Comm 光束功率預算計算參數

|           | 參數                     |                              |                                     |         |  |  |
|-----------|------------------------|------------------------------|-------------------------------------|---------|--|--|
| 類別        | Parameter              | Symbol                       | Value [unit]                        | Remark  |  |  |
| Geometric | Rx View Angle from Tx  | $\theta_{Rx}$                | 70 [μrad]                           |         |  |  |
|           | Rx Off Axis Angle      | ф                            | 70 [μrad]                           |         |  |  |
|           | Sat-Sat Distance       | Z                            | 500 [km]                            |         |  |  |
|           | Rx Off Axis Distance   | r                            | 35 [m]                              |         |  |  |
| Tx        | Laser Wavelength       | λ                            | 1550 [nm]                           |         |  |  |
|           | Laser Power            | $P_{\scriptscriptstyle tot}$ | 1 [W]                               |         |  |  |
|           | Laser Divergence Angle | $	heta_\omega$               | 0.015 [deg]<br>0.262 [mrad]         |         |  |  |
|           | Modulation Bandwidth   | B                            | 20 [MHz]                            |         |  |  |
|           | Waist Radius           | $\omega_0$                   | 1.28 [mm]                           |         |  |  |
| Rx        | Aperture Area          | A                            | $1.96 \times 10^{-3}  [\text{m}^2]$ | φ5 [cm] |  |  |
|           | Noise Equivalent Power | NEP                          | $0.46 \times 10^{-12}  [W]$         |         |  |  |
|           | Signal-to-Noise Ratio  | SNR                          | 36                                  |         |  |  |
|           | Minimum Required Power | $P_{\mathit{Rx\_min}}$       | $7.41 \times 10^{-8}  [W]$          |         |  |  |

資料來源:作者自行產製。

# 玖、軌道速度與相對角速度計算

由於低軌衛星軌道速度快,所以必須計算兩顆衛星間的相對角速度,以確保 Comm 光束的角度修正頻率,這些計算可以由圓周運動計算而得,以離地 500 km 圓形軌道為標準且兩衛星間距 500 km,幾何上架構如圖 11,軌道速度可寫為:

$$v = \sqrt{\frac{GM_{earth}}{r_{earth} + h_{sat}}} = 7.617 \times 10^3 \,\mathrm{m} \cdot \mathrm{s}^{-1}$$
 (9)

衛星間相對角速度可寫為:

$$\frac{d\theta}{dt} \approx \frac{v}{d_{sat}} \sin \theta_{sat} = 1.11 \text{ mrad/s} = 0.0635^{\circ}/\text{s}$$
 (10)

而 Beacon 精度為  $\theta_{\omega}=0.1^{\circ}=1.7$  mrad,換言之由姿態控制的修正頻率應高於 1 Hz,而 FSM 的修正則要更高到 42 Hz。




圖 11 高度 500 km, 間距 500 km 共同軌道的兩個衛星 (a) 幾何關係, (b) 經過單位時間後,衛星間視角改變之幾何關係

資料來源:作者自行產製。

### 拾、角度修正訊號與修正模擬

對於衛星對準角度的修正演算法目前也正在開發,目前以四象限偵測器訊號做為角度對準之誤差訊號,並以之提供衛星之θ及φ角修正,由姿態控制與FSM共同修正;以下亦將以地球座標與衛星相對位置展示對準過程之模擬。

四象限偵測器訊號模擬配合本團隊目前架設之反射式主鏡具有環形孔徑,因此 Beacon 光東在四象限偵測器平面上會是一個環形的光場分布。圖 12 (a) 為 Beacon 光東入射四象限偵測器的模擬圖。為了讓四象限偵測器訊號盡可能區分最大的移動範圍,Beacon 環形光斑的直徑設定為四象限偵測器直徑的一半,在實際架構中則是將四象限偵測器放置在略為失焦的平面上。圖 12 (b) 是將 Beacon 光斑在x方向上做位移,模擬在不同x位置上由四象限偵測器中四個訊號 ( $V_R$ 、 $V_L$ 、 $V_U$ 、 $V_D$ ) 計算得出的誤差訊號 Ex 值,Ex 及 Ey 的計算公式如下:

$$Ex = \frac{V_R - V_L}{V_R + V_L + V_U + V_D} \tag{11}$$

$$Ey = \frac{V_U - V_D}{V_R + V_L + V_U + V_D} \tag{12}$$

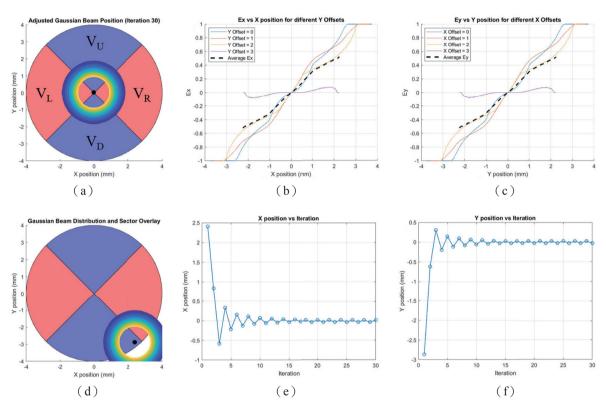



圖12 (a) 四象限偵測器與 Beacon 相對位置的模擬圖; (b)、(c) 為 x 位移和 y 位移所產生的 誤差函數; (d) 修正模擬的起始條件; (e)、(f) 為 x 位移和 y 位移的修正曲線 資料來源: 作者自行產製。

圖 11 (b) 中四條實線是對應光斑位移至 y=0, 1, 2, 3 (mm) 的 Ex 曲線,而虛線則是將四條曲線平均後的結果,可以看出當 y 的位移量在 0 mm、1 mm、2 mm 時,光斑在  $x=-3\sim3$  的範圍內皆能產生不同的 Ex 值,變化範圍為 [-1,1],而當 y 的位移量為 3 mm 時,Ex 的變化區間則減小為 [-0.1,0.1],這代表著當其中一軸位移量過大時,可能造成另一軸位移分辨率的下降,同樣的行為也能在另一軸向的模擬結果中觀察到如圖 12 (c),在實際應用上將會採用將圖中四條曲線平均得出的曲線作為誤差函數 (Error Function),應用在後續的修正程序中。

承上述,因修正程序中使用的誤差函數是平均後的結果,在不知道另一軸實際位移量的狀況下,誤差函數所反應出來的位移量可能失準,為了模擬得出一組 Ex 值和 Ey 值後的修正過程,在模擬中會設定一個 Beacon 位移的初始條件,如圖 11 (d) 所示,在計算得出 Ex 值和 Ey 值後,代入圖 12 (b) 和圖 12 (c) 中的平均誤差函數得出目前可能的 x 和 y 的位移

量並進行修正,圖 12 (e) 和圖 12 (f) 分別為在修正程序中光斑 x 和 y 位移量的變化過程,可以觀察到在第一次修正中可以快速地將較大的位移量修正到較小的位移量,但因誤差函數的不準確,整個程序約需進行 13 次修正,方能修正至接近中心的位置,透過調整光斑的大小或光斑的光場分布來,或許能進一步減少修正的次數。

為能模擬衛星在軌道上運行期間兩顆衛星的對準及持續的修正過程如圖 13 (a) 至圖 13 (c) ,在模擬中使用衛星實際繞行地球軌道的物理參數描述衛星的繞行速度,以及姿態的變化,其中衛星距地球表面高度設定為 500 km,衛星角速度為 1.107 mrad/s,兩個衛星的相對距離為 500 km。衛星的角度修正是先透過上一段所提到的四象限偵測器誤差函數來找出衛星間的角度差,在進行衛星的姿態修正,目前設定為慮衛星以反應輪每次姿態修正以比例一積分一微分控制器 (Proportional-Integral-Derivative Controller, PID Controller) 控制每次需花費約 10 s 方能完成,故設定修正週期為 10 s ,在每次修正期間兩個衛星的相對角度會因為繞地球運行而持續變化。圖 13 為根據上述修正條件進行的初步模擬結果,圖 13 (a) 兩顆衛星起始狀態,兩者衛星姿態之座標軸為亂數產生,兩顆衛星分別以實線與虛線表示衛星姿態座標軸,目標為藍色座標軸的對準。圖 13 (b) 為 1,000 s 後兩顆衛星的座標軸有對準。而圖 13 (c) 與圖 13 (d) 分別為第一顆與第二顆衛星的瞄準偏差隨時間的變化,可看出在對準的過程中,若已知對方空間位置(如 GPS 位置相互告知),應用簡單的對準演算法即可在三個對準周期內將對準精度維持在 3 mrad 之內,然而這在規格上仍嫌不足需改善,實務上小角度修正時間應不到 10 s ,因此對準精度將可再提高。

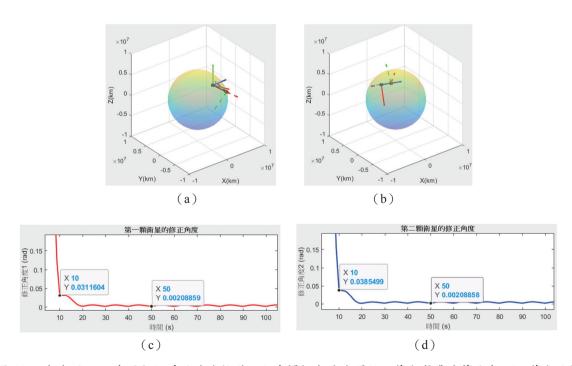



圖 13 (a)為兩顆衛星起始時於地球軌道上之座標軸與地球關係,藉由對準演算法每 10 s 藉由旋轉 改變衛星的自身座標軸一次,於(b)1,000 s 後兩顆衛星之座標軸以可維持對準;(c)、 (d)為第一顆衛星與第二顆衛星的指向差異,可看出在 20s 內即可達成穩定對準,且維持 在 3 mrad 以內

資料來源:作者自行產製。

### 拾壹、光學系統與電子系統初步測試

目前本團隊嘗試以較低價的可見光元件測試光學系統與基礎設計架構概念,目前使用可見光進行測試,以 650 nm 與 520 nm 作為 Comm 光束,以 450 nm 作為 Beacon 光束,光學系統與光學機械架設如圖 14,此架構建立兩套,分別使用 650 nm 做為 Comm Tx 與 Rx,此圖為使用 650 nm 為 Comm Tx。Beacon Tx 為獨立的藍光 450 nm 雷射與準直透鏡光學系統,而 Comm Tx 與 Rx 及 Beacon Rx 皆是由主鏡接收,目前使用商用反射式相機鏡頭(Samyang 800 mm MC IF f/8 Mirror)作為主鏡,主鏡直徑 10 cm。由於主鏡為反射式鏡頭且為摺疊光學路徑設計,因此有效光學孔徑為環形,因此前述四象限偵測器模擬使用環形光斑進行計算。目前架構沒有使用 FSM 進行修正機制,主鏡輸出直接將三種波長(Comm Tx, Comm Rx, Beacon Rx)以兩面分光鏡(Beam Splitter 1, Beam Splitter 2)分離,450 nm Beacon Rx 由四象限偵測器接收,圖 14 以 650 nm 紅光半導體雷射做為 Comm Tx,而 Comm Rx 為綠光 532 nm,由 PIN Diode 偵測器接收。

由於目前測試架構實體照片如圖 15,使用可見光,因此偵測器則使用矽基的 PIN Diode 及四象限偵測器,並自行設計製作各類電子電路,包含半導體雷射驅動電路、脈衝寬度 調制 (Pulse-Width Modulation, PWM) 訊號直接調變雷射輸出光強,偵測器之轉阻放大器 (Transimpedance Amplifier, TIA) 電路、四象限前級 TIA 與後端運算線路,以 18650 鋰電池為電源,訊號由 DAQ 處理連接到電腦。光學系統使用市售反射式鏡頭作為主鏡,並藉由 Thorlabs Cage 架設系統固定各光學與光電元件,目前架構與電路如圖 12。於 2025 年 2 月進行初步對位與通訊訊號量測與測試。

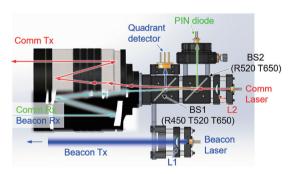



圖 14 測試架構基本光學與光機架構與各元件位置,此圖為以 650 nm 為 Comm Tx 之系統

圖 15 可見光測試系統外觀與架構 資料來源:作者自行拍攝。

資料來源:作者自行產製。

### 拾貳、未來展望

本團隊希望藉由目前的組裝測試經驗將逐步將此通訊核心更改為 1,550 nm 波長,Beacon 波長改為 976 nm、加入正確的電子電路以驅動 Beacon 與 Comm 光束,並以正確的 偵測模組實現光學通訊測試,並加上 FSM 與  $\theta$  與  $\phi$  電動旋轉平臺如圖 16 驗證 Beacon 對準 與快速 FSM 對準機構。



圖 16 以電動旋轉平臺架構經緯儀測試追蹤與指向演算法

資料來源:作者自行產製。

## 參考文獻

- Amonics, n.d., "High Power PM EDFA Compact Module," https://www.amonics.com/product/98 (accessed December 24, 2024).
- Carrasco-Casado A., Fernández V., and Denisenko N., 2016, "Free-Space Quantum Key Distribution," in M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary (Eds.), *Optical Wireless Communications: An Emerging Technology*, Cham, Switzerland: Springer. pp. 589-607. doi:10.1007/978-3-319-30201-0 27
- Coogan D. E., Conroy J., Clark M., Conklin J. W., Tomio H., Kammerer W., Grenfell P., Čierny O., Lindsay C., Garcia M., Serra P., Cahoy K., Stupl J., Mayer D., and Hanson J., 2022, "Development of CubeSat Spacecraft-To-Spacecraft Optical Link Detection Chain for the CLICK B/C Mission," paper presented at the Small Satellite Conference, Logan, UT.
- Excelitas, n.d., "C30927EH-03—Si APD Quadrant—1.5mm—800 nm," https://www.excelitas.com/product/c30927eh-03-si-apd-quadrant-15mm-800-nm (accessed December 24, 2024).
- García-Martínez M. J., Denisenko N., Soto D., Arroyo D., Orue A. B., and Fernandez V., 2013, "High-Speed Free-Space Quantum Key Distribution System for Urban Daylight Applications," *Applied Optics*, 52(14), 3311-3317. doi:10.1364/AO.52.003311
- Kammerer W., Grenfell P., Harburg J., Belsten N., Tomio H., Serra P., Cahoy K., Brothers T., Person M., Clark M., Coogan D., Conklin J., Mayer D., Stupl J., and Hanson J., 2023, "Click-A: Optical Communication Experiments from a CubeSat Downlink Terminal," paper presented at the Small Satellite Conference, Logan, UT.
- Li R., Lin B., Liu Y., Dong M., and Zhao S., 2022, "A Survey on Laser Space Network: Terminals, Links, and Architectures," *IEEE Access*, 10, 34815-34834. doi:10.1109/ACCESS.2022.3162917
- Lu Y.-Q., Wu S.-T., and Wong C., 2004, "A Liquid Crystal Based Fourier Optical Spectrum Analyzer," in *Optical Fiber Communication Conference*, 2004 (OFC 2004), Los Alamitos, CA: IEEE Computer Society Press, MF39.
- Space Development Agency, 2024/6/28, "Optical Communications Terminal Standard Version

- 4.0.0," https://www.sda.mil/wp-content/uploads/2024/07/SDA\_OCT\_Standard\_4.0.0\_final-20240701.pdf (accessed June 28, 2024).
- Thorlabs, n.d., "Free-Space InGaAs Avalanche Photodetectors," https://www.thorlabs.com/newgrouppage9.cfm?objectgroup\_id=4047&pn=APD130C (accessed December 24, 2024).
- Thorlabs, 2014/9/24, "BL976-PAG500 976 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC," https://www.thorlabs.com/thorproduct.cfm?partnumber=BL976-PAG500 (accessed December 24, 2024).